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Abstract

The paper empirically investigates the role of banks’ network centrality in the interbank

market on their funding rates. Specifically we analyze transaction data from the e-MID market,

the only electronic interbank market in the Euro Area and US, over the period 2006-2009

that encompasses the global financial crisis. We show that interbank spreads are significantly

affected by both local and global measures of connectedness. The effects of network centrality

increased as the financial crisis evolved. Local measures show that having more links increases

borrowing costs for borrowers and reduces premia for lenders. For global network centrality,

borrowers receive a significant discount if they increase their intermediation activity and become

more central, while lenders pay in general a premium (i.e. receive lower rates) for centrality.

This provides evidence of the ‘too-interconnected-to-fail’ hypothesis.
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1 Introduction

The global financial crisis of 2008 has highlighted the importance of contagion and systemic

risk in financial markets and the need to go beyond the traditional micro-prudential approach

to supervision. The network structure of markets has important implications for systemic risk.

The actual distribution of links between market participants affect how financial distress or the

disorderly failure of a financial entity could be transmitted to other financial firms and markets.

When defaults occur, they can cascade throughout the network and can cause the collapse of an

entire system. Three channels have been identified as primarily responsible for the contagion:

bilateral-exposures in interbank markets, fire sales externalities and liquidity hoarding due to

precautionary banks’ behavior, with the first channel the most extensively studied. While prior to

the crisis few academic papers had already investigated the importance of the interconnectedness

of the economy for financial stability (Allen and Gale (2000), Freixas et al. (2000), Eisenberg and

Noe (2001), Iori et al. (2006), Nier et al. (2007)) it is after the crisis that the role of the network

of exposures has been brought to the fore by the wider academic community and by policymakers.

Among the first, Haldane and May (2011) has called for a better understanding of how individually

complex institutions connect to one another in a complex network of counterparty exposures, in

order to design policy measures that can more effectively manage financial stability.

Network analysis of the degree of interconnectedness in the financial system can inform policymakers

on optimal bank resolutions mechanisms and how regulation can help to reduce instability. Empirical

networks have been used for (deterministic) stress test exercises (see Upper (2011) for a comprehensive

review). Of critical importance in macro prudential policy is the identification of key players in

the financial network, which according to the International Monetary Fund (IMF), the Bank for

International Settlements (BIS) and the Financial Stability Board (FSB) should be determined

in terms of their size, connectedness and substitutability. Network centrality measures, developed

to assess centrality in other contexts and adapted to the context of financial networks, can guide

national authorities in their assessment of the systemic importance of financial and non-financial

institutions. In the financial economic literature network analysis has mostly been applied to

payment systems, interbank lending markets, and more recently extended to capture the mutual

exposure of financial institutions to other asset classes, including derivatives contracts, in a

multilayer networks framework ( Bargigli et al. (2015), Leon et al. (2014), Molina-Borboa et
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al. (2015) and Aldasoro and Alves (2015)).

In this paper we focus on interbank lending networks on the e-MID overnight (O/N) interbank

market, an electronic platform, based in Italy, that offers a fully transparent trading systems with

‘buy’ and ‘sell’ proposals (prices and volumes) available on screens of the participating banks, along

with the identity of the banks quoting them. Information on the terms (prices and amounts) of

executed trades are available to banks in real time. Search frictions, thus, should not affect the

matching process in the e-MID market. Furthermore lack of information on rates offered by

alternative lenders cannot be responsible for the observed cross sectional dispersion of O/N rates

in this market. Our paper contributes to the recent literature that investigates the determinants of

banks’ borrowing costs in unsecured money markets and how network characteristics of interbank

market participants affect their funding rates. Network positioning could affect banks’ interest

rates by different mechanisms. First, in line with Acemoglu et al. (2015), dense interconnections

serve as a mechanism for the propagation of shocks, leading to a more fragile financial system.

As such, banks that are more connected may be perceived by the market as fragile. Second,

the same banks can be perceived as ‘too-interconnected-to-fail’ such that rather than fragile,

those banks are perceived as more likely to be bailout. This is similar to the too-big-to-fail

effect observed in other interbank markets. Third, as argued by Booth et al. (2014), financial

institutions with more extensive and strategic financial networks, can more efficiently acquire and

process information due to their better access to order flows. Fourth, as stressed by Gabrieli

and Georg (2014), banks with higher centrality within the network have better access to liquidity

and are able to charge larger intermediation spreads. Previous empirical evidence ( Angelini et

al. (2011), Gabrieli (2011), Gabbi (2012), Bech and Atalay (2010) , Akram and Christophersen

(2010) and Gabrieli (2012)) suggests that being systemically more important, in term of size or

connectedness, can explain part of the cross-sectional variation in banks’ borrowing costs before

and during the global financial crisis. The centrality indicators used in the analysis are constructed

from measures of distance of a bank from the other banks in the network, where distance is

expressed in terms of: (1) paths of length one, i.e. the number of incoming or outgoing links, for

degree centrality; (2) geodesics (shortest) paths (no vertex is visited more than once), for closeness

and betweenness; walks (vertices and edges can be visited/traversed multiple times) for eigenvector

centrality, pagerank and sinkrank. We evaluate each measure in a quarterly panel data regression

set-up of bank pairs, i.e. lender and borrower match, for the period 2006-2009 and separately

3



for three sub-periods that encompass the latest 2007-2008 financial crisis: phase I (01 January

2006-30 June 2007, using the key date of the Two Bear Stearns’ hedge fund bankruptcy was 31

July 2007), phase II (01 July 2007-30 September 2008, using the key date of Lehman Brothers

collapse was 15-Sep-2008) and phase III (01 October 2008-31 December 2009).

Our results show that network measures are significant determinants of funding rates in the

e-MID O/N market. Local measures show that having more links increases borrowing costs for

borrowers and reduces premia for lenders. However, for global measures of network centrality

borrowers receive a significant discount if they increase their intermediation activity and become

more central, while lenders pay in general a premium (i.e. receive lower rates) for centrality,

thus providing some evidence about the ‘too-interconnected-to-fail’ hypothesis. That is, banks

perceived to be better inter-connected could borrow at discount rates. This effect is higher in phase

II when systemic risk was the highest. Lenders do not benefit from network centrality, and as such,

it could be that the market perception about their network positioning (i.e. fragility) dominates

their strategic location for intermediation (as in Gabrieli and Georg, 2014). The regression analysis

also highlights that there is heterogeneity across different measures of network centrality on how

they affect interbank spreads.

The remainder of this article is organized as follows. Section 2 discusses previous findings

in the literature and how they relate to our paper. Section 3 describes the data and variables.

Section 4 provides methodology of the empirical analysis. In section 5, we present and discuss the

results of the regression analysis. Section 6 discusses the results and concludes.

2 Network centrality and financial markets

A number of papers have investigated the interplay between financial distress and topological

characteristic of interbank networks, focusing on the network resilience to different kinds of shocks

(Iori et al. (2006); Nier et al. (2007), Gai et al. (2011), Battiston et al. (2012); Anand et al. (2012),

Lenzu and Tedeschi (2012); Georg (2013); Roukny et al. (2013), Acemoglu et al. (2015)). While

some authors have argued that a more interconnected architecture could enhances the resilience

of the system to failure of a individual bank, because credit risk is shared among more creditors,

others have suggested that a higher density of connections may function as a destabilizing force,

facilitating financial distress to spread further through the banking system. The overall picture
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that emerges from this body of work is that the density of linkages has a non monotonous impact

on systemic stability and its effect varies with the nature of the shock, the heterogeneity of the

players and the state of the economy. Thus no optimal network structure, that is more resilient

under all circumstances, can be identified (see Chinazzi and Fagiolo (2013) for a recent survey on

systemic risk and financial contagion).

The structure of interbank networks has been mapped for several countries. Examples include

Boss et al. (2004) for the Austrian interbank market, Soramaki et al. (2007) and Bech and

Atalay (2010) for the US Federal funds market, De Masi et al. (2006), Iori et al. (2008) and

Fricke and Lux (2015) for the Italian based e-MID, Degryse and Nguyen (2007) for Belgium,

Craig and Von Peter (2014) for the German interbank market, Langfield et al. (2014) for the

UK and in ’t Veld and van Lelyveld (2014) for the Dutch market. These authors have explored

the topology of these interbank markets and identified stylized facts and regularities. The most

common findings reported in this literature are: (i) interbank networks are sparse, with only

a minority of all possible links that do actually exist; (ii) degree distributions and transaction

volumes distribution are fat tailed, revealing very heterogeneous players characteristics; (iii) the

networks show disassortative mixing with respect to the bank size, so small banks tend to trade

with large banks and vice versa; (iv) clustering coefficients are usually quite small; (v) interbank

networks satisfy the small-world property1; (vi) interbank networks have a tiering structure with

a tightly connected core of money-center banks to which all other periphery banks connect.

In particular for the e-MID market, while early studies (Iori et al. (2008)) have revealed

a fairly random network at the daily scale, a non-random structure has been uncovered for

longer aggregation periods. Monthly and quarterly aggregated data show that since the 1990s

a high degree of bank concentration occurred (Iazzetta and Manna (2009)), with fewer banks

acting as global hubs for the whole network. The hubs tend to cluster together and a significant

core-periphery structure has been observed (Finger et al. (2013)). Hatzopoulos et al. (2015) have

investigated the matching mechanism between lenders and borrowers in the e-MID market and

its evolution over time. They show that, when controlling for bank heterogeneity, the matching

mechanism is fairly random. Even though matches that occur more often than those consistent

with a random null model (over expressed links) exist and increase in number during the crisis,

1A network is small-world if the mean geodesic distance between pairs of nodes is small relative to the total
number of nodes in the network, that is, this distance grows no faster than logarithmically as the number of nodes
tends to infinity
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neither lenders nor borrowers systematically present several over expressed links at the same time.

The picture that emerges from their study is that banks are more likely to be chosen as trading

partners because they trade more often and not because they are more attractive in some dimension

(such as their financial healthiness or because they charge lower rates).

Fricke and Lux (2015) and Squartini et al. (2013) have investigated if the topology of interbank

networks, respectively for the e-MID market and the Dutch market, underwent major structural

change as the subprime crisis unfolded, in an attempt to identify early-warning signals of the

approaching crisis. In both markets at the onset of the crisis the dynamic evolution of the

network seemed completely uninformative as the networks only display an abrupt topological

change in 2008, providing a clear, but unpredictable, signature of the crisis. Nonetheless, when

controlling for the banks’ connectivity heterogeneity, Squartini et al. (2013) show that higher-order

topological properties (such as dyadic and triadic motifs) revealed a gradual transition into the

crisis, starting already in 2005. Although these results provide some evidence of early warning

topological precursors, at least for the Dutch interbank market, the authors cannot explain the

economic rationale for the observed patterns.

In addition to the abrupt topological change after Lehman defaults, that mostly appear to

be driven by precautionary liquidity hoarding, Cocco et al. (2009), Affinito (2012), Brauning

and Fecht (2012) and Temizsoy et al. (2015) have shown that banks relied more extensively

on relationship lending during the crisis, with both lenders and borrowers benefiting from close

relationship both in terms to access to liquidity and funding rates. Relationship lending thus plays

a positive role for financial stability and provides a measure of the level of financial substitutability

of banks in the interbank market. Furthermore these results show that interbank exposures is

used as a peer-monitoring device (Rochet and Tirole (1996)) and can help policymakers to assess

market discipline. Finally, reliance on relationship lending is an indicator of trust evaporation in

the banking system. Thus, monitoring how stable relations affect spreads and volumes over time

may act as an early warning indicator of a financial turmoil.

Bech and Atalay (2008) analyze the topology of the Federal Funds market by looking at

overnight transactions from 1997 to 2006. They show that reciprocity and centrality measures

are useful predictors of interest rates, with banks gaining from their centrality. Akram and

Christophersen (2010) studies the Norwegian interbank market over the period 2006-2009. He
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observes large variations in interest rates across banks, with systemically more important banks,

in terms of size and connectedness receiving more favorable terms. Gabrieli (2012) tests whether

measures of centrality can help explaining heterogeneous patters in the interest rates paid to

borrow unsecured funds in the e-MID market, once bank size and other bank and market factors

are controlled for. This paper shows that the effect of interconnectedness on interbank borrowing

costs is very different before versus after August 2007; and that banks of different size profit from

different forms of centrality before the crisis and lose from different forms after the crisis.

Similar to Gabrieli (2012), we also study the e-MID market and implement a number of

centrality measures in our analysis. The main difference with Gabrieli paper is that, like Akram

and Christophersen (2010), she perform the analysis on daily networks while we compute centrality

measures on quarterly aggregated transaction networks. This choice is motivated by the analysis

of Finger et al. (2012) who show that the e-MID networks appear to be random at the daily

level, but contain significant non-random structure for longer aggregation periods. While the use

of daily networks is justified by the fact that the underlying loans are O/N the daily networks

are not representative for the underlying ‘latent’ network. Daily transactions are rather random

draws from the true underlying network with the realizations depending on current liquidity need.

A much higher degree of structural stability is achieved for longer aggregation periods, monthly

or quarterly. At the daily scale several banks act exclusively as lenders or borrowers, and liquidity

flows over short paths resulting in very small values of centrality according to most measures,

which is not the case at longer aggregation scales. In addition we perform the regression analysis

not per bank but per pair, assessing simultaneously the role of lender and borrower centrality in

a transaction on the interest rates.

3 Data and variables definition

We use tick-by-tick data of the Italian e-MID from 01 January 2006 to 31 December 2009. We

have detailed information about each transaction; time, volume of trade, maturity, interest rate,

the side of the transaction (buy/sell) and the code of the banks acting as quoter and aggressor,

country of origin and size of both parties. The interest rate is expressed as annual rate and the

volume of the transaction is provided in millions of Euros. The e-MID market includes contracts

with maturities varying from one day to one year. We restrict our analysis to overnight (O/N)
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and the overnight long (ONL2), which consists of more than 90% of all e-MID transactions as the

interbank market is mainly a market for short-term trades. If loans with longer maturities were

included in the dataset, it would be difficult to derive a representative interest rate for the market

as longer term loans tend to be infrequent.

3.1 Interest Rate Spread

In this study, the unit of analysis is not an individual bank but a pair of banks, that is, lender

and borrower in order to control counterparty specific characteristics. We calculate the quarterly

volume weighted average interbank interest rate for each bank pair ij as

Sij,t =
1∑Nij,t

n=1 Vij,n

Nij,t∑
n=1

(rij,n − r̄dm) ∗ Vij,n,

where rij,n and Vij,n are the transaction level interest rate outstanding and volume of transaction,

respectively, for each pair of banks ij where i 6= j, Nij,t is the number of transactions for the

bank pair ij where i 6= j at period t and r̄dm is the daily volume weighted average rate over all

transactions carried out by the bank pairs and calculated as

r̄dm =

∑Nij,d

n=1

∑
j=1

∑
i=1 rij,n ∗ Vij,n∑Nij,d

n=1

∑
j=1

∑
i=1 Vij,n

,

where rij,n and Vij,n are defined same as spread formula above and Nij,d is number of transactions

for the bank pair ij where i 6= j at day d.

In our study, we only include banks that actively participate in the interbank overnight market

for all sub-periods phase I, II and III of the financial crisis of 2007-08 in order to avoid potential

selection bias in our analysis. The aim of this approach is to exclude banks that go bankrupt

or drop out of the market for any reason or banks that enter the market during sixteen quarters

from January 2006 through to December 2009. As a result of this data trimming for entering and

exiting banks, the number of banks during the period analyzed decreases from 200 to 140. Further

details about the sample are in Temizsoy, Iori, and Montes-Rojas (2015). We also consider three

sub-samples according to the evolution of the financial crisis:

2ONL refers to contracts when there is more than one day between two consecutive business days.
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Period Description Key date No. of Quarters

1-Jan-06 - 30-Jun-07 Phase I Two Bear Stearns’ hedge fund bankruptcy (31-Jul-07) 6

1-Jul-07 - 30-Sep-08 Phase II Lehman Brother’s collapse (15-Sep-08) 5

1-Oct-08 - 31-Dec-09 Phase III - 5

3.2 Network Centrality Measures

Centrality is a concept developed in sociology to assess who occupies critical positions in a network,

and to identify important, or powerful, individuals. Importance can be interpreted in different

ways and this has lead to different definitions of centrality. The most popular centralities measures

used in the financial economics literature all reflect the involvement of a node in the cohesiveness

of the network but differ on how cohesiveness is measured, that is in terms of how walks between

nodes are defined and counted. The measures described in this paper span from walks of length

one (degree centrality) to infinite walks (eigenvalue centrality). In simple structures these different

measures tend to covary but in more complex and larger networks, nodes can be more important

respect to some centrality measure and less important respect to others.

The network perspective emphasizes that power is not an individual attribute but is inherently

relational. Power may arise from occupying advantageous positions in networks of relations, such as

by being closer to others. For our analysis we represent the market as a network consisting of nodes

(banks) and a time-varying number of, weighted and directed, links between them (representing

interbank loans). The direction of the links follow the flow of money (from lenders to borrowers).

Two banks can be connected by two links, one in each direction, if they both act as lenders

and borrowers. Thus, network centrality directed measures provide different values of the bank’s

interconnectedness, focusing separately on the role of a bank as lender or as a borrow.

Let A be an adjacency matrix where aij means that i contributes to j’s status and n is the

number of nodes in the network. We compute a directed adjacency matrices where aij = 1 if bank

i lends to bank j, and 0 otherwise.

Nodes with more ties to other nodes have alternative ways to satisfy their needs, in our contest

they have greater opportunities to exchange liquidity. Choice makes these nodes less dependent

on other nodes, and in this sense more powerful, such as in bargaining better rates. Thus a simple

measure of a node centrality is its degree. When links are directed, it is common to distinguish
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centrality based on in-degree from centrality based on out-degree. Nodes that receive many ties

are said to be prominent, or to have high prestige or trust. Nodes who have high out-degree are

said to be influential. Formally indegree and outdegree centrality are defined as

IndegreeCentrality(i) =

∑
j aji

n− 1
,

OutdegreeCentrality(i) =

∑
j aij

n− 1
,

where A is the adjacency matrix and n is the number of nodes in the network.

Degree centrality only takes into account the immediate ties that a node has. A node might

be tied to a large number of others, but those others might be disconnected from the network as

a whole. In a case like this, the node could be central, according to degree centrality, but only in

a local neighborhood. So degree is a measure of local centrality.

Closeness and betweenness centrality focuses on the distance of a node to all the other nodes

in the network, and in this sense they are measures of global centrality. In connected graphs there

is a natural distance metric between all pairs of nodes, defined by the length of their shortest

paths. When defining Betweenness and Closeness we consider two alternative choices of directed

paths: the one that follows the flow of money lent, that is paths go from lenders to borrowers

(along outgoing links), and the one that follows the direction of repayments to be made, that

is paths go from borrowers to lenders (along incoming links). We name these two measures as

OutBetweenness, OutCloseness, InBetweenness, and InCloseness, respectively.

Betweenness centrality, introduced by Freeman (1979), is based on the idea that nodes have

positional advantage if they lay in between other pairs of nodes. The intuition is that nodes who

are “between” other nodes will be able to translate their broker role into power. Betweenness

centrality is computed, for each node, by adding up the proportion of times a node fall on the

shortest (geodesic) pathway between other pairs of nodes and is normalized by expressing it as a

percentage of the maximum possible betweenness that a node could have:

InBetweenness(k) =
1

(n− 1)(n− 2)

∑
i,j

σin(i, j|k)

σin(i, j)
,
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OutBetweenness(k) =
1

(n− 1)(n− 2)

∑
i,j

σout(i, j|k)

σout(i, j)
,

where σin(out)(i, j) is the number of shortest in (out) paths from node i to j and σin(out)(i, j|k)

is the number of such in (out) paths passing through the bank k. While Gabrieli (2012) reports

that this measure is very small and often zero in daily networks, confirming the limited extent of

intermediary trading in the e-MID market at daily aggregation scale, we find that in quarterly

networks, very few nodes exclusively lend or borrow (on average about 5% of the banks only lend

or only borrow in a given quarter but the proportion increases up to 10% for borrower is Phase

III) and values of betweenness are over 10 times larger than the one reported by Gabrieli both for

the directed and non directed version of the centrality indicator.

Closeness centrality is calculated as the inverse of the average of the shortest (geodesic paths)

from a node to each other node in the network.

InCloseness(i) =
1

n− 1

∑
j 6=i

1

lin(i, j)
,

OutCloseness(i) =
1

n− 1

∑
j 6=i

1

lout(i, j)
,

where lin(i, j) lout(i, j) represent respectively the length of the shortest in and out paths.

Bonacich (1972, 1987) and Katz (1953) proposed a modification of the degree centrality based

on the idea that the centrality of a node depends on the centrality of the nodes that link to it,

InEigenvector centrality, or on the centrality of the nodes it links to, OutEigenvector centrality.

These measures are defined as

InEigenvector(i) =
∑
j

ajiInEigenvector(j),

OutEigenvector(i) =
∑
j

aijOutEigenvector(j).

In matrix form, this can be expressed as

InEigenvector = AT InEigenvector,

OutEigenvector = AOutEigenvector,
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where InEigenvector and OutEigenvector are vectors of centrality scores3. Thus the centralities

are given by the elements of the eigenvector of A or AT corresponding to an eigenvalue of 1, which

in general has no non-zero solution. One way to make the equations solvable is to normalize the

rows (columns) so that each adds up to 1 and A and AT become a stochastic matrix. The other

way, first suggested by Bonacich (1972), is to assume that each individual’s status is proportional

(not necessarily equal) to the weighted sum of the individuals to whom she is connected, in which

case the equation can be rewritten as

InBonacich(i) = 1/λ
∑
j

ajiInBonacich(j),

OutBonacich(i) = 1/λ
∑
j

aijOutBonacich(j),

so that the centrality measure is given by the eigenvector associated to the largest eigenvalue of

AT . If the graph is strongly connected the Perron-Frobenius theorem guarantees that there is

unique and positive eigenvector. Bonacich is the eigenvector centrality measure computed for our

regression analysis.

A practical problem with eigenvector centrality is that it works well only if the graph is

(strongly) connected, i.e. if each node is reachable from every other node in the network. Real

undirected networks typically have a large connected component. However, real directed networks

do not. If a directed network is not strongly connected, only vertices that are in strongly connected

components or in the out-component and in-component4 of the strongly connected components

can have non-zero eigenvector centrality. This happens because nodes with no incoming edges

have, by definition, a null InEigenvector centrality score, and so have nodes that are pointed to

only by nodes with a null InEigenvector centrality score (and the analogous for the OutEigenvector

centrality). Thus, when a node is in a directed acyclic graph, centrality becomes zero, even though

the node can have many edges connected to it. A way to work around this problem is to give each

node a small amount of centrality for free, regardless of the position of the vertex in the network,

C = αATC + β1

3In undirected networks AT = A and the two measures coincide.
4The in-component of a node is the set of vertices from which that node can be reached; the out component is

the set of vertices that can be reached from that node.

12



which has the solution C = (I−αAT )−1 ·β1. This measure of centrality is equivalent to a measure

proposed by Katz (1953) who suggested that influence could be measured by a weighted sum of all

the powers of the adjacency matrix A (or AT ). Powers of A (or AT ) give the number of directed

walks of length given by that power. Giving higher powers of A less weight would index the

attenuation of influence through longer paths

InKatz =
∞∑
l=1

(αAT )l.

OutKatz =
∞∑
l=1

(αA)l.

The infinite sum converges, so for example InKatz = (I − αAT )−1 · 1 as long as α < 1/λ1,

where λ1 is the maximum value of an eigenvalue of AT . As a result, eigenvector centrality can

be interpreted as a distance between nodes measured by unrestricted walks of any length, rather

than by paths or geodesics.

A popular commercialization of eigenvector centrality is Google’s PageRank algorithm (Page

et al., 1999), which also can be computed for asymmetric networks. Unlike Katz’s centrality, where

a node passes all its centrality to its out-links, or inherit all the centrality from its incoming links,

with PageRank each connected neighbour gets a fraction of the source node’s centrality

InPagerank(i) =
1− β
N

+ β
∑
j

aji
InPagerank(j)

OutDegree(j)
,

OutPagerank(i) =
1− β
N

+ β
∑
j

aij
OutPagerank(j)

InDegree(j)
,

where β the damping factor (that is the parting of PageRank that is transferred by a node). For

β = 1 page rank converges to eigenvector centrality (normally β = 0.85 is used). Pagerank can

be reformulated in matrix format as InPagerank(j) = (I−βATD−1)−1 ·δ1 where D is a diagonal

matrix of out-degrees and δ = (1 − β)/n. As a result of Markov theory, it can be shown that

PageRank is the steady state probability distribution of a random walk with a restart probability

δ. Thus PageRank can be interpreted as the fraction of time that a random walk(er) will spend

at a node over an infinite time horizon. The restart probability allows the random process out of

dead-ends (dangling nodes). PageRank (as well as SinkRank below) can be generalized to weighted

13



networks by replacing the adjacency matrix with the weights matrix and the nodes’ degrees with

their strengths.

For all the centrality measured considered so far, the in version capture the importance of a

bank as a lender and the out version captures the importance of a bank as a borrower. If we are

interested in systemic risk it is the in centrality version of the centrality measures that is more

relevant. A borrower can be systemically important only if their lenders are also systemically

important borrowers as in this case distress can propagate through the network On the contrary

banks characterized by a high out-centrality measure can be important liquidity providers as, by

lending to other central lenders, they contribute to the overall market liquidity.

Two recently-developed centrality measures are Acemoglu et al. (2015) harmonic distance and

Soramaki (2013) SinkRank.

The harmonic distance from bank i to bank j is defined as

Harmonic(i, j) = θi +
∑
k 6=j

(yik/yi)CH(k, j)

where yik represents the value of the loans borrowed by bank k from bank i and yi all loans

given by bank i. The centrality of the node can then be measured by the increase of the sum of

the harmonic distance of a node from all other nodes in the network5. Acemoglu et al. (2015)

shows that the matrix Q, whose elements are qij = yij/yi, is a stochastic matrix and hence can

be interpreted as the transition probability matrix of a Markov chain. For this Markov chain, one

can define the mean hitting time from i to j as the expected number of time steps it takes the

chain to hit state j conditional on starting from state i. Acemoglu et al. (2015, p.588) show that

the harmonic distance from bank i to j is equal to the mean hitting time of the Markov chain

from state i to state j. Acemoglu et al. (2015) argues that “various off-the-shelf (and popular)

measures of network centrality (such as eigenvector or Bonacich centralities) may not be the

right notions for identifying systemically important financial institutions. Rather, if the interbank

interactions exhibit non-linearities similar to those induced by the presence of unsecured debt

contracts, then it is the bank closest to all others according to our harmonic distance measure

that may be ‘too-interconnected-to-fail.’ ” (pp. 566-567) Similar to Acemoglu et al. (2015)

5Acemouglu’s Harmonic distance is, in our terminology an out − centrality measure, and the corresponding in
version could also be defined.
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measure Soramaki’s SinkRank is based on absorbing Markov chains. SinkRank is defined as

Sinkrank =
n−m∑
i

∑
j qij

where m is the number of absorbing states and n −m the number of non absorbing states and

qij the element of the matrix Q = (I − S)−1 and S is the matrix of transition probability for

non-absorbing states. Q is a matrix whose elements give the number of times, starting in state i

a process is expected to visit state j before absorption, that is the total number of visits a process

is expected to make to all the non-absorbing states. Sink distance can only be calculated when

a directed path exists between the absorbing node and the non-absorbing node being considered,

thus it is most useful as a centrality metric for networks that are strongly connected. It can be

generalized to networks that are not strongly connected by adding a small constant to the zero

elements of the transition matrix, equivalent to the random jump probability used in the PageRank

algorithm, in which case the transition probabilities become pij = β
sij∑
j sij

+ 1−β
n . We compute

both the in and out versions of the Sinkrank centrality, where, as for the other centrality measures,

the in version is obtained from the transpose of the connectivity matrix, and is also known as

Sourcerank. While Sinkrank identify liquidity sinks, Sourcerank identifies liquidity providers.

Table 1 shows the summary statistics for the network centrality variables used in the regression

models below.

Figure 2 illustrate the average and quantiles of indegree of borrower and outdegree of lender

for three phases of 2007-2008 financial turmoil. Both variables show a higher inter-quantile range

before Lehman’s collapse than after. There is, however, a sharp decrease in the upper quantile of

both measures during the second phase.

Figure 3 shows the average and quantiles of closeness and betweenness centrality over the time.

Although there is no clear pattern in the betweenness centrality of banks, closeness decreases during

the second and third phase of the 2007-2008 financial turmoil, a trend that is similar to the local

degree centrality measures. Figure 4 shows no clear trend in the quantiles of the eigenvector-based

centrality measures but some of the distributions appear to become more right skewed towards

the end of the analyzed period.

Figures 5-7 show the distribution of centrality measures for the entire sample and for the three

15



different subsamples, phases I-III. We discuss these figures in more details in the Results section.

Global centrality measures tend to correlate with local centrality measures as, by construction,

high degree can lead to high centrality. To quantify the importance of this effect, we regress

the nodes global InCentrality (OutCentrality) versus their Indegre (Outdegree) and plot the

coefficients of the pooled OLS regressions, for each quarter separately, in Figure 8. The plots

show interesting dynamics: while correlations decrease over time for pagerank, they increase for

closeness and have a non monotonous behavior for betweenness. We do not explore in this paper

what consequences such dynamic change may have in terms of the banking system stability, but

we do control for these correlations when assessing the effect of global centrality on interbank

spreads.

3.3 Other control variables

In our analysis, in addition to centrality measures, we also control for a other variables that may

affect interest rate spreads.

The identity of the banks trading in the e-MID is unknown to us and replaced by a unique

identifier in our dataset. This makes it impossible to match e-MID trading data with balance

sheet or other banks’ specific data. Other studies (see Angelini et al., 2011) have shown that banks

characteristics such as credit ratings, capital ratios, or profitability remained roughly unchanged

during the precrisis and crisis period. Neither borrower and lender liquidity nor their shortage of

capital correlate with e-MID market spreads in Angelini et al. (2011) study. Of course, since credit

ratings lost credibility as the crisis unfolded we do not know if banks used rating agencies’ scores

to inform their choices of counterparty. Neither we know what other private or public information

was available to banks. For this reason we also include time varying measures of aggregate volumes

of O/N trading by both the lender and borrower as a proxy of banks’ characteristics. The intuition

is that participation in terms of volume captures all unobserved factors that may be relevant to

explain banks’ spreads. We also include transaction concentration, Transaction Ratio (%), that

measures the ratio of the number of transactions between each pair to all transactions that takes

place in the same period. This variable captures the overall importance of the pair within the

network structure.

Another key determinant of O/N rates is the time of a transaction. While Angelini (2000)
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using hourly e-MID data shows no intraday pattern of interest rates, Baglioni and Monticini (2008)

and Gabbi et al. (2012) find a decreasing trend in the O/N rate as the trading day progresses.

The intraday slope becomes more pronounced with the financial crisis and, in particular, after the

Lehman Brothers collapse. The intraday term structure of interest rate is due to the maturity of

O/N deposits which are expected to be reimbursed at 9 am of the day following the trade. The

increase in the slope of the yield curve after the default of Lehman apparently creates a risk-free

profit opportunity. Baglioni and Monticini (2008) suggest that this opportunity is not arbitraged

away for two main reasons: uncertainty about availability of liquidity late in the afternoon and

an increase in the implicit cost of collaterals. Similar to Baglioni and Monticini (2008), we also

examine the effect of the time interval of the transaction performed. Instead of dividing the day

into hourly segments, we use only two slots: morning (8 am - 1 pm) and afternoon (1 pm - 6

pm). Morning-Afternoon (AM/PM Ratio) is the fraction of the difference between number of

transactions that occur during morning and afternoon to all transaction of each pair at a given

period. In the interbank market, participants must repay the loans at 9 am on the next trading day

of transaction. Hence, morning interest rates have a premium to account for the longer maturity

period than those transactions in the afternoon.

While the e-MID market is not affected by search frictions and lack of transparency, trading

in the electronic segment of the interbank market is affected by its own specific micro-structure

features. Gabbi et al. (2012) and Temizsoy et al. (2015) have shown that due to a bid-ask spread

effect, better rates are obtained, both by lenders and borrowers, when they act as quoters rather

than as aggressors. A credit institution that first comes to the market with a proposal to lend

or borrow is called quoter, while the bank that picks a quote and exercises a proposal is called

aggressor. Aggressors, by choosing their counterparts, may have more power than quoters in a

pair relationship. Thus we control for variations in rates that are explained by the bid-ask spread

effect by separately studying quoters and aggressors. Then we control for the ratio of the difference

between number of transactions of a pair that occurs when lender is a quoter and when a lender

is aggressor, divided by all transactions of the pair at a given quarter (Quot/Agg Ratio).
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4 Econometric Model

In order to investigate the effect of network characteristics on the interbank market we consider

the following econometric model. Let

Sij,t = β0 + β1Aij,t + β2Bi,t + β3Cj,t + uij,t

uij,t = µij + δt + eij,t.

where i, j denotes bank pairs (bank i lends to j), t indexes time, Sij,t is the spread, Aij,t, Bi,t and

Cj,t represent pair, lender, and borrower related variables, respectively, µij is the pair-specific

effect, δt a time-specific effect, and eij,t is the unobserved residual. We estimate the model

above using fixed-effects (FE) at bank pair level and time dummies. We also compute robust

standard errors clustered at the bank pair level which allows us to control for the time-varying

bank heterogeneity. Since we want to allow different effect of variables on spread, we run the same

model for three time spans, phase I, phase II, phase III of the latest financial turmoil, and for all

pooled periods.

All analyses are done conditional on bank pair ij fixed-effects, and therefore, the effect of

the variables should be interpreted as conditional on the existence of that particular link i → j.

We cannot claim that network characteristics cause spreads. Feedback effects between network

positioning and prices are possible, with network characteristics leading to better prices and more

favorable prices reinforcing network effects. This feedback loop makes it difficult to establish

the causality of the effect. Temizsoy et al. (2015) shows that such feedback effects are small.

Spreads do not determine survival of a bank pair into the following months once relationship

indexes are controlled for, while relationship lending has an effect on spreads. Previous studies (see

Hatzopoulos et al., 2015) have also shown that, when controlling for banks heterogeneity in trading

activity, the matching process in the e-MID market is fairly random. This suggests that links are

not preferentially formed with banks that offer lower rates or that are more trustworthy. Rather

banks appear to be more likely to selected as trading partners because they trade more often.

This points to a causal effect of relationship on prices rather than the other way around. In this

paper we do not model the entry and exit decisions of banks and their matching patterns. What

we show is that network variables, once formed, possibly at random, persists and are important

for explaining prices and can play an important role also within a transparent market such as the
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e-MID.

Network variables are introduced one at a time in different specifications, together for both

lender and borrower. The reason is that while they are intended to describe different features of the

network they are very correlated with each other. For global measures, we consider specifications

both with and without controlling for the local network counterparts. Network variables are

considered in logarithm form, and as such, regression coefficients should be interpreted as the

effect of doubling network centrality on spreads, in basis points.

All specifications include a set of baseline covariates given by Transaction Ratio(%), AM/PM

Ratio, Quot/Agg Ratio, Reciprocity Ratio, O/N Trading Amount of Lender, O/N Trading Amount

of Borrower, described in section 3.3. The inclusion of these covariates is to isolate the effect

of network characteristics on transaction spreads from bank- and pair-specific variables that

contribute to spreads (see Temizsoy et al., 2015, for a description of the effect of these variables

on spreads).

5 Results

5.1 Local network measures

As a first approximation to the effect of network centrality on the interbank market we evaluate

the effect of local centrality measures (in logs) on spreads. Table 2 shows the effect of degree

centrality on interbank spreads. Columns (1)-(4) presents a specification with lenders (L) and

borrowers (B), indegree and outdegree. The results show that B with high indegree pay higher

spreads, and this effect increases in magnitude as the financial crisis evolves. The pooled effect

determines that doubling borrowing links (i.e. increasing the logarithm of the indegree centrality

measure by 1 unit) increases interest rate by 1.437 basis points in all pooled periods, which

corresponds to 0.653, 0.929, and 3.849 in phases I, II and III, respectively. That is, B pay a

premium to be able to get more partners in the interbank network, and this increases when

systemic risk increases. We might thus speculate that financial uncertainty directs banks towards

looking for better connections within the established network structure and they paid a premium

for the number of links.

L have no clear pattern regarding outdegree network centrality measures. L outdegree has a
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non-significant effect for all pooled periods (column (1)), positive for phases I and II (columns (2)

and (3)), and negative (although not significant) for phase III (column (4)). This shows that L

were able to obtain better rates for having more links within the network before Lehman’s collapse,

but the effect reverses after it. L thus pay a price for diversification when systemic risk increases.

Possibly this suggests that in the presence of systemic risks, banks diversify their transactions, and

incur in worse interest rates. Diversification may in turn increase uncertainty as well established

information flows with a few partners are reduced (see Temizsoy et al., 2015).

The results show that L (B) who engage in a well connected borrowing (lending) activity benefit

by obtaining better rates. Overall this suggests that network effects depend on the joint lending

and borrowing activities of the banks. In order to explore this further we add the interaction terms

indegree by outdegree, separately for L and B, to the previous specification (columns (5)-(8)).

Considering all pooled periods, L obtain higher rates and B lower rates when they engage in both

lending and borrowing activities. The same effects appear in phase I, although they are not present

in phases II and III.

Figure 5, first row, shows the bivariate kernel density estimation for lenders (L) outdegree and

borrowers (B) indegree, for the all periods together, phase I, phase II and phase III. The graphs

show a differentiated behavior for lenders and B. L outdegree has lower dispersion in phase I than

in Phases II and III, thus indicating increasing heterogeneity in L as the financial crisis evolves.

B indegree, on the other hand, has decreasing dispersion across phases. In fact the phase I plot

indicates the existence of B with many lenders, which eventually disappear in the following phases.

Figure 5, second row, shows the bivariate kernel density estimation for outdegree and indegree

of L, while the third row does it for outdegree and indegree of B, for the all periods together,

phase I, phase II and phase III. The second row also shows that, from the point of view of L,

banks borrow from less counterparts overtime, while outdegree becomes bimodal in phase III. The

graphs in the third row indicate an overall reduction in the amount of incoming and outgoing

links, in this case from the point of view of B.

Two potential situations should be mentioned for systemic risk. The first case corresponds to

banks who lend to few counterparties (small outdegree of L) that in turn borrow from many (large

indegree of B). The lenders in this case are highly exposed to the B (as lenders do not diversify)

and if these borrowers default they may spread the distress to several lenders. Note that while
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the proportion of L with few counterparties increased, B had less and less counterparties. This

indicates that this case has not been observed in our sample. The second case corresponds to

banks who lend to many counterparties (large outdegree of L) who in turn borrow from few banks

(small indegree of B). If such lender exits the market or default they may generate a liquidity crisis

as their borrowers may find it difficult to satisfy their liquidity needs unless they create new links

in the market, i.e. substitutability. The e-MID interbank market seems to be very prone to this

second kind of systemic risk, provided that the overall outdegree of B reduces while there appear

to be some lenders that attract many links to themselves.

5.2 Global network measures

Global network measures show the positioning of a bank and its relationship to the interbank

system. In contrast to local measures, these variables tend to identify if the bank is located in

a particular position with a particular flow of money going through it. Moreover, while local

measures can be affected by individual banks’ decisions, and thus regression coefficients cannot

be interpreted as causal effects, global measures are less affected by individual decisions, as they

depend on collective actions, and then they could be considered as exogenous variables in regression

models.

Consider first the effect of betweenness in table 3. Recall that betweenness measures a bank’s

access to the interbank liquidity. When all pooled periods are considered, InBetwenness has a

negative effect for both L and B, and OutBetweenness has a positive significant effect for B. For

B, the effects increase in absolute value as the financial crisis evolves (i.e. the largest effect is in

phase III). When local centrality is controlled for, only OutBetweenness remains significant. For

L, the largest effect appear in phase III, where InBetweenness has a large negative effect while

OutBetweenness is positive and significant. When both in and out measures are interacted B

obtain a negative effect, which is significant for all pooled periods and for phase II. The fact that

L coefficients are not significant suggests that the effect is not driven by market power, as otherwise

both L and B would benefit from it, but by a ‘too-interconnected-to-fail’ perception of the B that

benefit of lower spreads because the market participants believe highly connected borrowers will

be bailout in case of default to avoid systemic effects. Then network interconnectedness were

perceived as an asset for B during the crisis (i.e. phase II), and this vanishes after Lehman’s
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collapse.

Now consider the effect of closeness in table 4. Closeness is the inverse of the average shortest

distance of a bank from all banks that are reachable from it, and thus, a bank with higher

closeness is connected to more banks. For B, InCloseness has a large positive and significant effect

for all periods and subperiods, except for phase II when local centrality is controlled for. For L,

OutCloseness is negative, and statistical significant. These results suggests that both B and L pay

a premium for being interconnected to the network, and this increases when systemic risk is high.

Note that in this case the interaction for B of in and out has a positive coefficient for all pooled

periods but not significant for subperiods.

Figures 6-7 plot betweenness of L and B bivariate density estimates. The figures clearly reveal

two features producing an L-shaped density in betweenness. First, the existence of a large number

of L for which betweenness is either zero or close to zero, possibly L who do not borrow. Second,

there is also a big proportion of B that also have zero or small betweenness. For closeness, figure

6 also reveals two types of borrowers, some with positive closeness and some with close to zero

closeness. The latter group increases as a proportion of the total amount of borrowers in phase

III.

Tables 5-7 present the coefficient estimates of different global network variables using eigenvector

centrality measures. All specifications include the same control variables as described in section

3.3, although they are not reported.

Eigenvector type centrality measures how well connected the nodes to which that bank is

connected to. It does not only measure how a bank is connected to the network, but it also

indicates connectedness of its neighbors. Three different measures are used in the regression

models (see the definitions above): Bonacich’s eigenvector, pagerank and sinkrank. In each case,

the centrality measure can be constructed by using the adjacency matrix A or its transpose. The

former is the out definition and corresponds to the centrality of a bank as a lender. The latter is

the in definition and corresponds to the centrality of a bank as a borrower. For each pair of banks

and a particular direction, we can consider the in and out centrality of both L and B in different

specifications.

The eigenvector network variables have similar and consistent effects across measures. They

show that for all pooled periods L receive lower rates for higher outcentrality (doubling out-centrality
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reduces spreads by 0.65 basis points) while B pay higher rates for higher incentrality (doubling

in-centrality increases funding rates by 0.9 basis points). These effects increase in absolute value

across the financial crisis, with the pooled effect driven by phase III for B (where the effect increases

up to 3 basis points) and by phase II or III for L. The coefficient estimates have, in general, the

same sign with and without controlling for local measures. Overall, controlling for local network

degree, the effect is marginally reduced. Note that Bonacich measure has in general smaller (and

less significant) effects than pagerank and sinkrank. Such differences are due to the nature of the

e-MID sample as not strongly connected. This produces a significant amount of nodes with zero

centrality even though they are connected nodes. Pagerank and sinkrank do not suffer from this

and these are our preferred global centrality measures.

The opposite edge measures, i.e. out for B and in for L, have an overall non statistically

significant effect. The exception is the out-centrality measures for B that appear with a negative

and significant effect in phase II. That is, B who have a high global centrality in lending obtain lower

rates for their borrowing. In order to explore this further, we consider the in- and out-centrality

interaction. B obtain a significant discount on their funding rates, suggesting that B receive better

(i.e. lower) rates when engage in both lending and borrowing. L, however, have a non statistically

significant effect for all pooled periods. The largest interaction effects appear in phase II for B,

and in phase III for L, the latter with a negative effect.

6 Discussion and concluding remarks

Local and global measures of centrality are used to identify different features of how the network

characteristics affect the interbank market funding rates. Local measures show that having more

links increases borrowing costs for borrowers and reduces premia for lenders. We interpret this

effect as a premium paid by lenders to diversify counterparty risk, and by borrowers to reduce

funding risk. Our constructed global eigenvector-based measures of centrality are in general in line

with the local measures of centrality when looked at in isolation. That is, for banks being central

is a cost. Note that, in general, the highest effect in absolute value corresponds to either phases

II or III. In fact, the coefficient sign for all pooled periods is either dominated by that of phase

II or phase III. The higher spreads paid by both lenders and borrowers with high in-centrality

measures suggests the market associates InEigenvalue centrality with higher credit risk.
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To disentangle the role of local factors (degree) on global centrality measures in the analysis,

we control for local degree in our global centrality regressions. The fact that global effects remain

statistically significant after controlling for the local network effects, suggests that overall global

and local network effects operate on a different level in the e-MID market.

A node is important from a global network perspective if it is pointed by other important

nodes. In our case, borrowers are important if their lenders are important borrowers as well. As

such, importance, given through borrowing, is the potential to propagate distress and generate

systemic risk. Eigenvalue-based centrality measures may be dominated by the degree of the nodes

as, by construction, high indegree produces high InEigenvector centrality. InEigenvector centrality

can be large for banks that are liquidity sinks, that is, banks that borrow from many (and borrow

a lot), but that are rather peripherical to the network and as such do not spread distress beyond

their direct creditors. A visual inspection of local vs. global measures indeed confirms this fact,

that is, there is a high correlation between local and global measures, but several banks stand out

as being characterised by high centrality and low degree. These are the banks that inherits their

centrality from their lenders and are the potential spreader of systemic risk. (See the Appendix

for correlation figures between local and global centrality measures.)

Betweenness, on the other hand, is high, and different from zero, for banks that both lend and

borrow, and it increases as the intermediation role of banks increase. This measure is thus probably

large for the banks in the core and small for those in the periphery. The negative coefficient for

InBetweenness for both lenders and borrowers suggest the market participants perceive borrowers

who are central according to this measure as too connected to fail, likely to be bailout in case of

default to avoid systemic effects, and as such offer them a discount.

This interpretation is confirmed by the negative coefficient observed for borrowers when the

in and out Pagerank and Sinkrank centrality measures are interacted, indicating again that large

borrowers that are central in both directions obtain lower funding rates. However, lenders do not

benefit from high betweenness or the joint in and out global network centrality. The fact that

only borrowers, and not lenders, benefit from joint centrality point to a ‘too-interconnected-to-fail’

hypothesis rather to a broker or intermediation effect. As such, these borrowers get better deals

for funding in the interbank markets, and this is probably due to the market perception of their

network positioning. This effect is the largest in phase II, when banks became affected and/or
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aware of systemic risk. For lenders, the market perception about their network positioning (i.e.

fragility) dominates their strategic location for intermediation (as in Gabrieli and Georg, 2014).

From a policy perspective monitoring how funding cost advantages, associated to the perceived

systemically importance of financial institutions, can be an important tool to assess the effectiveness

of the regulatory reforms. Banks perceived as more likely to receive taxpayer support may benefit

from lower funding costs. These implicit subsidy this can create moral hazard and provide an

incentive to take on additional risk, exacerbating system fragility. Regulators thus have the

objective to eliminate the perception that some financial institutions are too big to fail or, in

our case, ‘too-interconnected-to-fail’. Monitoring how funding cost advantages evolve over time

may provide a way to measure the effectiveness on regulatory policy to reduce systemic risk on

one side and act as an early warning indicator of systemic risk on the other.

Favorable rates obtained by more central banks do not necessarily reflect lower credit risk owing

to any implicit government guarantee against default. It could also reflect higher bargaining power

and/or lower credit risk through more diversified portfolios. Disentangling these effects is difficult

in the case of OTC markets where market participants actively search for counterparties. When

counterparties meet, they negotiate terms privately, often ignoring prices available from other

potential counterparties and with limited knowledge about trades recently negotiated elsewhere

in the market. Thus better connected banks may have better access to liquidity and benefit from

better rates in compensation of their intermediation role. But the e-MID is a fully transparent

trading platform. There is little scope for intermediation in this market. Search frictions and

lack of information on rates offered by alternative lenders cannot be responsible for the observed

cross-sectional dispersion of O/N rates in this market.

Nonetheless our analysis does not allow to identify why centrality affect banks terms of trade

in a financial network. Some banks probably choose to create more local links or have to because

they cannot satisfy their needs trading with fewer counterparties. Some may choose to act as

intermediaries. While in a fixed network one can expect centrality to deliver positive effects to

both lenders and borrowers, either because information or market power effects, in the case of

endogenous and dynamic networks this is less obvious. The theoretical literature does not help us

in this respect. While several theoretical papers have analyzed how the incentives of single agents

to form linkages affect the resulting network topology (Goyal and Vega-Redondo (2007), Babus
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(2011), Babus (2013), van der Leij and Kovarik (2012)) leading in some cases to a core-periphery

structure (in ’t Veld et al. (2014), Lux and Farboodi (2013)) they do not provide any insights

on the benefit of centrality in terms of prices. Our empirical results thus indicate that further

theoretical work should be done to explore this issue.
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Figure 1: Bank Pair Spread over Time
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Figure 2: Quantile Analysis Degree Centrality
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Table 1: Summary Statistics

Variable Obs Mean Std. Dev. Min Max
Bank Pair Spread 37872 -.434 8.422 -114.934 82.004
lndegree of L 37872 20.076 22.968 0 108
Indegree Centrality of L 37872 .125 .141 0 .645
Outdegree of L 37872 30.361 15.18 1 89
Outdegree Centrality of L 37872 .19 .092 .006 .533
Indegree of B 37872 43.775 23.78 1 108
Indegree Centrality of B 37872 .274 .146 .006 .645
Outdegree of B 37872 20.365 15.931 0 89
Outdegree Centrality of B 37872 .126 .097 0 .533
OutBetweenness of L 37872 .01 .018 0 .14
InBetweenness of L 37872 .01 .01 .001 .066
OutBetweenness of B 37872 .013 .019 0 .14
InBetweenness of B 37872 .006 .008 .001 .066
OutCloseness of L 37872 .391 .066 .006 .606
InCloseness of L 37872 .337 .196 0 .716
OutCloseness of B 37872 .336 .11 0 .606
InCloseness of B 37872 .493 .088 .006 .716
OutBonacich of L 37872 .098 .056 0 .262
InBonacich of L 37872 .052 .059 0 .346
OutBonacich of B 37872 .061 .05 0 .241
inBonacich of B 37872 .118 .069 0 .346
OutPagerank of L 37872 .009 .006 .002 .039
InPagerank of L 37872 .006 .007 .001 .147
OutPagerank of B 37872 .007 .005 .001 .039
InPagerank of B 37872 .013 .012 .001 .147
OutSinkrank of L 37872 .004 .003 .001 .022
InSinkrank of L 37872 .005 .005 .001 .056
OutSinkrank of B 37872 .003 .003 .001 .022
InSinkrank of B 37872 .01 .007 .001 .056
Reciprocity Ratio 37872 .566 3.842 0 422
AM/PM Ratio 37872 .036 .81 -1 1
Quot/Agg Ratio 37872 -.537 .714 -1 1
Transaction Ratio 37872 .034 .066 .004 6.44
ON Trading Amount of Lender 37872 14.471 18.901 .007 154.421
ON Trading Amount of Borrower 37872 20.029 22.487 .002 154.421

Logarithmic Form of Network Measures
ln(Indegree of L) 30052 2.644 1.272 0 4.682
ln(Indegree Centrality of L) 30052 -2.429 1.264 -5.13 -.439
ln(Outdegree of L) 37872 3.263 .608 0 4.489
ln(Outdegree Centrality of L) 37872 -1.805 .596 -5.13 -.629
ln(Indegree of B) 37872 3.575 .739 0 4.682
ln(Indegree Centrality of B) 37872 -1.493 .731 -5.13 -.439
ln(Outdegree of B) 36094 2.687 1.02 0 4.489
ln(Outdegree of B) 36094 -2.385 1.004 -5.13 -.629
ln(OutBetweenness of L) 29960 -5.577 1.859 -13.341 -1.967
ln(InBetweenness of L) 37872 -5.012 .825 -6.574 -2.723
ln(OutBetweenness of B) 36056 -5.244 1.611 -13.341 -1.967
ln(InBetweenness of B) 37872 -5.453 .797 -6.578 -2.723
ln(OutCloseness of L) 37872 -.957 .228 -5.106 -.501
ln(InCloseness of L) 30052 -.92 .505 -5.13 -.334
ln(OutCloseness of B) 36094 -1.099 .462 -5.106 -.501
ln(InCloseness of B) 37872 -.729 .238 -5.13 -.334
ln(OutBonacich of L) 37838 -2.605 1.226 -25.999 -1.341
ln(InBonacich of L) 29686 -3.393 1.692 -32.993 -1.061
ln(OutBonacich of B) 36022 -3.513 2.712 -25.999 -1.424
ln(InBonacich of B) 37813 -2.405 .933 -32.993 -1.061
ln(OutPagerank of L) 37872 -4.844 .581 -6.447 -3.232
ln(InPagerank of L) 37872 -5.586 .967 -6.957 -1.916
ln(OutPagerank of B) 37872 -5.24 .65 -6.515 -3.232
ln(InPagerank of B) 37872 -4.566 .729 -6.938 -1.916
ln(OutSinkrank of L) 37872 -5.59 .574 -7.014 -3.811
ln(InSinkrank of L) 37872 -5.834 .974 -7.033 -2.886
ln(OutSinkrank of B) 37872 -5.987 .653 -7.033 -3.811
ln(InSinkrank of B) 37872 -4.819 .726 -7.014 -2.886
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Table 2: All O/N Loans - Local Network Measures as Determinants of Interest Rate Spread

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

OutdegreeCentrality (L) -0.000 0.731** 0.766 -0.773 0.059 0.783** 0.835 -0.866
(0.235) (0.329) (0.528) (0.732) (0.246) (0.340) (0.551) (0.724)

IndegreeCentrality (B) 1.437*** 0.653*** 0.929 3.849*** 1.338*** 0.575*** 0.896 3.756***
(0.235) (0.217) (0.718) (0.684) (0.248) (0.215) (0.773) (0.679)

IndegreeCentrality (L) 0.171** -0.114 -0.218 0.604*** 0.175** -0.094 -0.219 0.941***
(0.078) (0.096) (0.150) (0.190) (0.078) (0.097) (0.150) (0.337)

OutdegreeCentrality (B) -0.107 0.065 -0.726*** -0.363 -0.000 0.103 -0.675*** 0.133
(0.085) (0.088) (0.184) (0.247) (0.096) (0.088) (0.201) (0.457)

DegreeCentrality (L) (in*out) 0.212* 0.322* 0.438 -0.936*
(0.124) (0.170) (0.267) (0.568)

DegreeCentrality (B) (in*out) -0.279** -0.299* -0.121 -0.645
(0.134) (0.173) (0.387) (0.484)

Transaction Ratio 4.932** 0.800 0.137 17.800*** 4.884** 0.720 0.237 16.626***
(2.318) (1.532) (1.889) (2.642) (2.301) (1.539) (1.899) (2.679)

AM/PM Ratio 2.270*** 1.155*** 3.247*** 1.638*** 2.273*** 1.158*** 3.241*** 1.680***
(0.093) (0.098) (0.197) (0.246) (0.093) (0.098) (0.196) (0.246)

Quot/Agg Ratio 1.606*** 0.872*** 1.794*** 3.125*** 1.614*** 0.873*** 1.793*** 3.163***
(0.119) (0.137) (0.255) (0.364) (0.119) (0.137) (0.255) (0.361)

Reciprocity Ratio -0.070*** 0.027 -0.040 -0.031 -0.069*** 0.029 -0.037 -0.062
(0.020) (0.039) (0.029) (0.175) (0.019) (0.039) (0.029) (0.179)

ON Trading Amount of Lender -0.009* -0.012** -0.027** -0.066 -0.007 -0.010* -0.022* -0.081
(0.005) (0.006) (0.013) (0.054) (0.005) (0.006) (0.012) (0.055)

ON Trading Amount of Borrower 0.012** -0.001 0.010 -0.071** 0.009 -0.004 0.008 -0.081***
(0.006) (0.005) (0.014) (0.028) (0.006) (0.005) (0.015) (0.031)

Observations 28,690 12,886 10,996 4,808 28,690 12,886 10,996 4,808
R-squared 0.084 0.037 0.082 0.174 0.085 0.038 0.083 0.178
Number of pair id 6,214 4,710 4,565 2,360 6,214 4,710 4,565 2,360

All network measures are in logarithmic form. *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses. ON
Trading Volume is used as proxy for bank size.
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Table 3: All O/N Loans - Global Network Measures as Determinants of Interest Rate Spread (Betweenness)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

InBetweenness (L) -0.531*** 0.321*** -0.301 -2.038*** -0.535** 0.155 -0.345 -4.368***
(0.131) (0.123) (0.224) (0.393) (0.245) (0.276) (0.529) (0.945)

InBetweenness (B) -0.608*** -0.238* -0.639*** -0.918** -1.138*** -0.714* -0.951 0.487
(0.125) (0.130) (0.245) (0.405) (0.281) (0.419) (0.711) (1.033)

OutBetweenness (L) 0.057 -0.089 0.055 0.390*** 0.071 -0.261 0.020 -1.996**
(0.052) (0.059) (0.104) (0.129) (0.226) (0.259) (0.553) (0.856)

OutBetweenness (B) 0.330*** 0.104* -0.109 0.444*** -0.440 -0.580 -0.589 2.672*
(0.066) (0.062) (0.124) (0.150) (0.376) (0.499) (1.137) (1.506)

Betweenness (L)(in*out) 0.003 -0.032 -0.007 -0.496***
(0.044) (0.052) (0.102) (0.186)

Betweenness (B)(in*out) -0.130** -0.111 -0.078 0.395
(0.061) (0.081) (0.180) (0.263)

R-squared 0.081 0.036 0.079 0.159 0.081 0.036 0.079 0.164

Controlling for Local Measures
InBetweenness (L) -0.639*** 0.079 -0.858*** -1.444*** -0.565** -0.012 -0.047 -3.917***

(0.161) (0.133) (0.293) (0.436) (0.251) (0.294) (0.521) (0.937)
InBetweenness (B) -0.148 -0.156 -0.410 -0.152 -1.338*** -0.868** -1.718** -0.324

(0.126) (0.153) (0.253) (0.405) (0.278) (0.419) (0.749) (1.039)
OutBetweenness (L) 0.012 -0.131 0.196 0.413** 0.151 -0.234 1.351** -2.372**

(0.066) (0.081) (0.124) (0.184) (0.248) (0.265) (0.640) (0.943)
OutBetweenness (B) 0.332*** 0.011 0.233 0.424** -1.562*** -1.107** -1.937 0.256

(0.095) (0.095) (0.230) (0.169) (0.389) (0.535) (1.278) (1.584)
Betweenness (L)(in*out) 0.024 -0.018 0.209* -0.565***

(0.045) (0.050) (0.114) (0.195)
Betweenness (B)(in*out) -0.313*** -0.179** -0.354* -0.031

(0.062) (0.084) (0.198) (0.275)

R-squared 0.084 0.038 0.084 0.178 0.085 0.038 0.085 0.182
All network measures are in logarithmic form. In all models, we control for same variables used in the analysis of local

network measures in table 2; transaction ratio, AM/PM ratio, quoter/aggressor ratio and ON trading volume. ON Trading
Volume is used as proxy for bank size. In the second set of results, we also control for indegree and outdegree of both lender

and borrower. *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses.
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Table 4: All O/N Loans - Global Network Measures as Determinants of Interest Rate Spread (Closeness)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

InCloseness (L) 0.068 -0.026 -0.256 -0.219 0.186 3.148 -0.039 3.113***
(0.111) (0.080) (0.174) (0.222) (0.960) (2.277) (0.890) (1.168)

InCloseness (B) 5.226*** 3.668*** 3.628** 19.255*** 9.499*** -2.767 1.339 20.615***
(0.909) (1.065) (1.595) (3.243) (1.329) (4.343) (8.942) (2.880)

OutCloseness (L) -2.214*** 3.167** 0.474 -5.909*** -1.650 5.811** 0.626 -0.685
(0.722) (1.352) (1.775) (1.807) (1.090) (2.825) (1.952) (1.946)

OutCloseness (B) 0.034 0.441 -1.180*** -0.597** 2.113*** -4.098 -2.628 -0.917
(0.124) (0.559) (0.298) (0.262) (0.412) (3.183) (5.254) (1.003)

Closeness (L) (in*out) 0.091 3.585 0.226 2.814***
(0.950) (2.552) (0.857) (1.027)

Closeness (B) (in*out) 2.941*** -7.051 -2.060 -0.580
(0.575) (4.993) (7.473) (1.396)

R-squared 0.083 0.037 0.079 0.208 0.085 0.038 0.079 0.213

Controlling for Local Measures
InCloseness (L) 0.056 0.037 -0.048 -0.664** -0.256 3.569 -0.313 2.349*

(0.118) (0.080) (0.185) (0.277) (0.994) (2.330) (0.864) (1.224)
InCloseness (B) 2.188** 3.733** 1.798 20.844*** 6.420*** -3.228 -2.629 25.098***

(1.051) (1.731) (1.751) (5.949) (1.721) (4.889) (8.764) (4.165)
OutCloseness (L) -4.694*** 0.766 -9.283*** -7.491*** -4.643*** 3.863 -9.629*** -2.225

(1.252) (1.878) (3.108) (2.363) (1.524) (3.190) (3.222) (2.376)
OutCloseness (B) 0.185 -0.167 -0.288 -0.777*** 1.925*** -4.744 -2.921 -0.503

(0.126) (1.083) (0.285) (0.287) (0.443) (3.284) (4.938) (0.985)
Closeness (L)(in*out) -0.302 3.968 -0.265 2.522**

(0.980) (2.604) (0.833) (1.061)
Closeness (B)(in*out) 2.504*** -7.130 -3.741 0.332

(0.629) (5.095) (7.022) (1.426)

R-squared 0.086 0.038 0.084 0.213 0.087 0.038 0.084 0.218
All network measures are in logarithmic form. In all models, we control for same variables used in the analysis of local

network measures in table 2; transaction ratio, AM/PM ratio, quoter/aggressor ratio and ON trading volume. ON Trading
Volume is used as proxy for bank size. In the second set of results, we also control for indegree and outdegree of both lender

and borrower. *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses.
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Table 5: All O/N Loans - Global Network Measures as Determinants of Interest Rate Spread (Bonacich
eigenvector)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

OutBonacich (L) -0.244** 0.711** 0.018 -0.621** -0.092 0.813 0.059 -0.973*
(0.108) (0.319) (0.327) (0.273) (0.127) (0.553) (0.390) (0.546)

OutBonacich (B) -0.012 0.072 -0.832*** -0.147*** 0.167*** 0.146 -0.624* -0.455***
(0.020) (0.060) (0.165) (0.042) (0.050) (0.325) (0.369) (0.149)

InBonacich (L) 0.027 -0.076 -0.083** 0.650*** 0.170* 0.020 -0.067 0.388
(0.035) (0.068) (0.039) (0.166) (0.091) (0.290) (0.141) (0.318)

InBonacich (B) 0.955*** 0.709*** 0.401** 2.709*** 1.392*** 0.804** 0.727 2.169***
(0.183) (0.168) (0.186) (0.517) (0.181) (0.409) (0.621) (0.580)

Bonacich (L)(in*out) 0.039* 0.036 0.003 -0.123
(0.022) (0.097) (0.032) (0.141)

Bonacich (B)(in*out) 0.110*** 0.031 0.077 -0.208**
(0.030) (0.137) (0.118) (0.091)

R-squared 0.083 0.039 0.083 0.190 0.084 0.039 0.083 0.193

Controlling for Local Measures
OutBonacich (L) -0.531*** 0.842 -2.668*** -0.751** -0.432** 1.099 -2.679*** -1.190*

(0.160) (0.626) (0.645) (0.325) (0.175) (1.017) (0.668) (0.655)
OutBonacich (B) 0.014 0.106 -0.738** -0.166*** 0.149*** 0.262 -1.132* -0.436***

(0.021) (0.121) (0.374) (0.047) (0.046) (0.348) (0.648) (0.153)
InBonacich (L) 0.027 -0.005 0.001 0.701*** 0.130 0.214 0.043 0.404

(0.037) (0.103) (0.046) (0.229) (0.122) (0.397) (0.180) (0.377)
InBonacich (B) 0.394* 1.047*** 0.159 1.520* 0.838*** 1.284** -0.366 1.100

(0.203) (0.332) (0.154) (0.879) (0.216) (0.589) (0.700) (0.921)
Bonacich (L)(in*out) 0.025 0.072 0.010 -0.143

(0.027) (0.125) (0.037) (0.146)
Bonacich (B)(in*out) 0.092*** 0.064 -0.110 -0.191*

(0.030) (0.145) (0.130) (0.098)

R-squared 0.085 0.039 0.088 0.193 0.085 0.039 0.088 0.196
All network measures are in logarithmic form. In all models, we control for same variables used in the analysis of local

network measures in table 2; transaction ratio, AM/PM ratio, quoter/aggressor ratio and ON trading volume. ON Trading
Volume is used as proxy for bank size. In the second set of results, we also control for indegree and outdegree of both lender

and borrower. *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses.
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Table 6: All O/N Loans - Global Network Measures as Determinants of Interest Rate Spread (Pagerank)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

OutPagerank (L) -0.551*** 0.170 0.060 -1.321*** 0.403 1.974** -0.317 -5.832***
(0.149) (0.181) (0.265) (0.339) (0.694) (0.829) (1.235) (1.909)

OutPagerank (B) -0.033 0.046 -0.659*** -0.141 -2.552*** -0.019 -5.253*** 0.155
(0.106) (0.125) (0.201) (0.288) (0.642) (0.705) (1.596) (1.284)

InPagerank (L) -0.157* -0.237** -0.248 0.683*** 0.726 1.439** -0.573 -3.113**
(0.094) (0.117) (0.182) (0.262) (0.583) (0.705) (1.027) (1.491)

InPagerank (B) 1.243*** 0.637*** 0.507* 3.515*** -1.687** 0.567 -4.949** 3.870**
(0.125) (0.142) (0.266) (0.277) (0.755) (0.764) (2.003) (1.502)

Pagerank (L)(in*out) 0.181 0.342** -0.065 -0.824**
(0.117) (0.141) (0.203) (0.341)

Pagerank (B)(in*out) -0.563*** -0.015 -1.059*** 0.070
(0.142) (0.145) (0.367) (0.291)

R-squared 0.092 0.034 0.079 0.182 0.093 0.035 0.081 0.184

Controlling for Local Measures
OutPagerank (L) -0.629*** -0.425* -0.409 -1.264** -0.694 1.548* -1.041 -11.267***

(0.217) (0.255) (0.382) (0.575) (0.812) (0.930) (1.450) (2.510)
OutPagerank (B) 0.309* -0.054 -0.085 0.479 -3.599*** -0.684 -5.196*** -2.488

(0.160) (0.192) (0.297) (0.477) (0.799) (0.926) (2.008) (2.066)
InPagerank (L) -0.167 -0.160 0.322 1.023** -0.207 1.677** -0.229 -7.657***

(0.152) (0.185) (0.316) (0.452) (0.698) (0.744) (1.259) (2.074)
InPagerank (B) 0.871*** 0.536** 0.156 3.317*** -3.769*** -0.178 -5.993** -0.166

(0.213) (0.242) (0.520) (0.530) (0.970) (1.002) (2.534) (2.376)
Pagerank (L)(in*out) -0.007 0.376** -0.110 -1.934***

(0.140) (0.154) (0.243) (0.480)
Pagerank (B)(in*out) -0.866*** -0.137 -1.177** -0.665

(0.175) (0.187) (0.462) (0.462)

R-squared 0.085 0.038 0.083 0.194 0.086 0.039 0.084 0.201
All network measures are in logarithmic form. In all models, we control for same variables used in the analysis of local

network measures in table 2; transaction ratio, AM/PM ratio, quoter/aggressor ratio and ON trading volume. ON Trading
Volume is used as proxy for bank size. In the second set of results, we also control for indegree and outdegree of both lender

and borrower. *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses.
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Table 7: All O/N Loans - Global Network Measures as Determinants of Interest Rate Spread (Sinkrank)

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES All Phase I Phase II Phase III All Phase I Phase II Phase III

OutSinkrank (L) -0.556*** 0.167 0.070 -1.352*** -0.385 2.133** -0.428 -5.930***
(0.152) (0.183) (0.278) (0.339) (0.788) (0.834) (1.340) (2.062)

OutSinkrank (B) -0.037 0.045 -0.670*** -0.221 -1.660** 0.072 -6.754*** -0.187
(0.107) (0.126) (0.203) (0.290) (0.663) (0.727) (1.596) (1.509)

InSinkrank (L) -0.163* -0.242** -0.246 0.657** 0.013 1.777** -0.727 -3.499**
(0.095) (0.118) (0.183) (0.267) (0.731) (0.780) (1.256) (1.747)

InSinkrank (B) 1.294*** 0.642*** 0.501* 3.543*** -0.754 0.678 -7.488*** 3.588*
(0.132) (0.144) (0.269) (0.302) (0.845) (0.867) (2.191) (1.831)

Sinkrank (L)(in*out) 0.032 0.362*** -0.083 -0.753**
(0.128) (0.138) (0.218) (0.333)

Sinkrank (B)(in*out) -0.344** 0.005 -1.360*** 0.010
(0.140) (0.145) (0.354) (0.304)

R-squared 0.092 0.034 0.079 0.177 0.092 0.035 0.082 0.178

Controlling for Local Measures
OutSinkrank (L) -0.645*** -0.443* -0.414 -1.298** -1.619* 1.612* -1.028 -11.541***

(0.226) (0.262) (0.408) (0.592) (0.919) (0.965) (1.575) (2.689)
OutSinkrank (B) 0.310* -0.058 -0.095 0.476 -2.884*** -0.642 -7.344*** -4.070*

(0.161) (0.194) (0.301) (0.486) (0.831) (0.904) (2.036) (2.428)
InSinkrank (L) -0.178 -0.171 0.326 1.037** -1.176 1.947** -0.243 -8.541***

(0.153) (0.187) (0.319) (0.461) (0.885) (0.867) (1.551) (2.412)
InSinkrank (B) 0.915*** 0.539** 0.167 3.311*** -3.176*** -0.182 -9.438*** -2.058

(0.233) (0.250) (0.534) (0.570) (1.076) (1.059) (2.787) (2.846)
Sinkrank (L)(in*out) -0.177 0.382** -0.102 -1.778***

(0.156) (0.158) (0.266) (0.465)
Sinkrank (B)(in*out) -0.674*** -0.123 -1.621*** -0.896*

(0.173) (0.178) (0.453) (0.480)

R-squared 0.085 0.038 0.082 0.191 0.086 0.039 0.086 0.197
All network measures are in logarithmic form. In all models, we control for same variables used in the analysis of local

network measures in table 2; transaction ratio, AM/PM ratio, quoter/aggressor ratio and ON trading volume. ON Trading
Volume is used as proxy for bank size. In the second set of results, we also control for indegree and outdegree of both lender

and borrower. *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses.
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