OLYMPUS CORPORATION has obtained the ISO9001/ISO14001.

Light microscopes for microscope have suggested lifetimes. Please visit our website for details.

Specifications and appearances are subject to change without any notice or obligation on the part of the manufacturer.

The first true macro fluorescence imaging system
The ultimate in macro fluorescence imaging. The new MVX10 MacroView from Olympus.

Researchers are interested in the impact of gene expression and protein function not only at the cellular level but also within whole tissues, organs and even organisms. Hence organisms like C. elegans, Drosophila, Zebrafish, Xenopus, Mouse or the plant Arabidopsis are used as biological models for in vivo studies in a vast field of research applications. The introduction of the naturally fluorescent protein markers, such as Green Fluorescent Protein (GFP), was a significant breakthrough since proteins can now be labelled without influencing their function.

The perfect microscope for fluorescence observation in intact organisms must combine maximum detection sensitivity at the lowest magnifications with a high magnification zoom for the resolution of fine details within organs, tissues and even cells. The Olympus MVX10 MacroView brings both of these factors together with many other unique features to bridge the gap between macro and micro observation, providing unprecedented brightness, resolution and precision.

- High fluorescence efficiency plus stereo observation
- Seamless observation from 4x to 125x
- Zoom factor up to 31 times
- Long WD for observation at optimum magnification
- Maximum specimen protection due to short exposure time
- Complete system solutions for optimized recordings
High fluorescence efficiency plus stereo observation

Up until now, stereo microscopes have been the instruments of choice for fluorescence observation at low magnifications. For the stereoscopic effect, two optical paths are used—one for the left and one for the right eye. Stereo microscopy, though, is not very well suited to imaging the weak light generated by fluorescence, since the light collected by the objective is split in two. The Olympus MVX10 MacroView on the other hand, employs a single-zoom optical path with a large diameter, which is optimized to collect light with unprecedented efficiency and resolution at all magnifications. From fluorescent observation of whole organisms such as zebrafish at low magnification to the detailed observation of gene expression at the cellular level at high magnification—the MVX10 helps you to see it all.

What’s more, the MVX10 features a unique pupil division mechanism in the light-path to mimic the effect of stereo microscopy. So you can get the best of both worlds—high light efficiency and stereo observation—in one system just by moving a slider. This puts the MVX10 in a class of its own.

Dedicated to fluorescence

All components of the light path contribute to the phenomenal fluorescence performance of the MVX10. Using the latest technologies and new materials, the MVX10 objectives produce almost zero autofluorescence. Together with very high numerical apertures this results in an extremely good signal-to-noise (S/N) ratio, ensuring excellent contrast for observation of even the faintest fluorescence signals. Moreover, the S/N ratio is further enhanced by two novel proprietary features:

- A new coating technique gives the Olympus HQ filters an exceptional edge steepness and very low autofluorescence.
- All the filter cubes are equipped to absorb stray light.

Light collection efficiency is also maximized with an aspherical fluorescence collector, which bundles the light for minimum intensity loss.

Smooth and Parfocal objectives for seamless observation from macro to micro

A unique objective line

The MVX10 provides the same working distance and large field of view as stereo microscopes, but with much higher resolution due to the increased numerical aperture (NA). Specially designed for the MVX10, the 0.63x, 1x and 2x planapochromatic objectives produce the highest image quality. All three objectives are pupil-corrected for best image flatness and show high transmission to NIR and superior chromatic aberration correction. This produces great flexibility for efficient, fast and precise fluorescence observation, screening and imaging—from low to high magnification over time.

Dynamic

The 0.63x objective has a maximum field of view of 65 mm, making it easy to track fast-moving specimens over time. With its exceptionally high NA of 0.15, fluorescence from large objects, such as whole embryos, can be viewed with perfect brightness at all magnifications.

Gentle

The pupilfree NA and S/N ratio values of all the optical components mean that specimens can be exposed to fluorescent light for shorter periods. This is also true at near-infrared wavelengths where the MVX10 has superior transmission properties and thus fluorochromes throughout the entire spectrum can be used with minimal sample damage.

From macro to micro

Using the 2-position revolving nosepiece with the 0.63x and 2x objectives expands the usable zoom range up to 31. The objectives are parfocal corrected, making refocusing after objective switching very quick and easy. Only a small amount of fine focusing is necessary to return to the optimal focus position, making macro to micro changes seamless. The 2x objective is also equipped with an additional correction collar to adjust the image quality independently of the specimen medium.

Long working distance (WD) ensures more efficiency in screening and observation

In comparison with stereomicroscopes, the MVX10 provides the same working distance and a much higher NA (65 mm WD and maximum 0.25 NA when using a 1x objective). This makes fluorescence screening and verification of gene expression especially efficient, improves speed and precision, reduces judgment errors, and eliminates the need to switch back and forth between a stereomicroscope and inverted microscope.
Use MVX10 for Optical Membrane Voltage Recording - From Sample Preparation to Recording

With optimal fluorescence light throughput, the MVX10 is highly effective for optical membrane voltage recordings requiring the detection of minute changes in fluorescence. It can be used for optical recordings at high speeds and high signal-to-noise ratios as well as utilized in the preparation of brain slices, tissue blocks, isolated hearts, in vivo animals, and other biological specimens. The interchangeable fluorescence filter cube unit in the MVX10 enables recordings using various kinds of fluorescent probe.

Optical Recording of Neuronal Circuits in Mice Cerebella

An isolated P7 mouse cerebellum was stained with membrane voltage-sensitive dye (Di-2-ANApV, Hygenon Corp.). The Principal Olive (Medial Accessory Olive) was visualized using the neuronal circuit structure. The images were acquired using the MVX10 (MVPLAPO 200 and 3.5X Zoom) and a high-speed imaging system (MAMCAM, Brainvision Inc.) at 200 frames per second, 128 X 128 pixels of spatial resolution, and 10 times averaging. Individual pixel size at this magnification is approximately 7-15 microns/pixel. The pseudo colors in the above image sample display both the intensity and propagation of electrical activity resulting from electrode stimulation of inferior olivary nuclei (indicated by arrow). The numbers above the images represent pixel magnification, and the numbers below the images represent the time after stimulation. The waves (upper right) reflect the changes in fluorescence corresponding to the red, black, and blue-colored points on the image. The detailed structure of neuronal circuits can be recorded at high spatial and temporal resolutions using the MVX10 and membrane voltage-sensitive dye.

Dr. Akibiro Amano
Laboratory for Memory and Learning, Neuronal Circuit Mechanisms Research Group
RIKEN, Brain Science Institute

Optical Recording of Neural Activity with Membrane Voltage-Sensitive Dyes

These images show the propagation of neural activity in a mouse hippocampus slice (400-micron thickness) resulting from electrical stimulation in the Schaffer collateral region. Membrane voltage-sensitive dye (Di-2-ANApV, Hygenon Corp.) was used to image the minute changes in fluorescence. The images were acquired using the MVX10 (MVPLAPO 200 and 3.5X Zoom) and a high-speed imaging system (MAMCAM, Brainvision Inc.) at 10,000 frames per second, 100 X 100 pixels of spatial resolution, and 6 times averaging. Individual pixel size at this magnification is approximately 8 microns/pixel. The pseudo colors in the above image display both the intensity and propagation of electrical activity resulting from electrode stimulation. The numbers below the images represent frame numbers and time after stimulation. The waves reflect the changes in fluorescence corresponding to the red, black, and blue-colored points on the image. Optimal signal-to-noise ratios can be recorded at extremely high speeds with MVX10.

Dr. Yuuto Sekine and Dr. Akibiro Fukushima
Division of Neuronal Network, Department of Basic Medical Sciences
The Institute of Medical Science, University of Tokyo

Illuminators for various observation methods

High-level transmitted light illumination base S2X2-4L2B

This illumination provides optimal contrast adjustment for detailed observation of transparent specimens. With a single action, the user can select a “high” or “low” contrast setting. Oblique illumination is also provided.

Large stand S2X2-STL

This stable stand with large base provides a broad working space for observing large specimens. Attaching the Motorized Focus Unit (SZX2-FO4) creates a more comfortable working environment.